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¥. INTRODU CTION

There have been several recent studies involving the tracking of
a cluster of drifting buoys drogued at a suitable depth. Such a study can
cbviously establish the trajectory of the large scale ocean currents.
But it can also determine the differential kinematic properties (DKP,
such as divergence, vorticity, strain rate, etc.) of flow structures
whose scales are of the order of the cluster size. One such study was
that of Molinari and Kirwan (1975), who in particular examined whether the
rate of change of potential vorticity

(5 = (1) ()%

is nearly zero in the Yucatan Current, near the Mexican coast. (Here (‘
is the vorticity, jﬁ is the Coriolis parameter, D is the depth of current,
and VH- f\{/ is the horizontal divergence of current.) They found that,
in several instances, the two terms on the right hand side of the potential
vorticity equation have opposite signs, and nearly cancel each other.
This simple balance was found to breakdown when the cluster was within about
50 km from the coast, presumably due to frictional effects.

A natural question that arises is the influence of friction on the
movement of the cluster. In non-geophysical, laboratory flows the influence
of turbulent friction is generally felt in boundary layers near walls.

The flow away from walls has negligible turbulence since they cannct be

maintained in the absence of shear. 1In geophysical flows the fluctuations

can be continually created by baroclinic instabilities, thermal convections,

etc. and therefore need not be confined to boundary layers only. The

friction is expected to increase near Coastal boundaries, however, because

of the presence of the shear. It is observed that the longshore fluctuations






increase in magnitude near the coast (Kundu and Allen 1976), just like in
laboratory flows.

Note that not all types of random fluctuations have the characteristics.
of ''turbulence'. A superposition of irrotational random waves going in
different directions does not have the dispersive and dissipative characteristics
of turbulence. A cluster of buoys in such a stationary homogeneous flow
would drift apart and come together at various times, but the mean rate of
1ncrease of the enclosed area would te zero. The present note essentially
examines whether there is a mean tendency for the area to increase. It
will be found that, in most of the cases examined, there is a mezn tendency
for the area enclosed by a buoy cluster to increase with time.

Molinari and Kirwan (1975) describes how the DKP induced by scales
of motion of the order of the cluster size are determined by a least square
fitting technique. They attributed the scales of motion smaller than the
cluster size as ''turbulence'. However, it is now suggested that this view
is arbitrary, and misleading. The eddies that cause the gradual dispersion
of the cluster most efficiently are, in fact, of the size of the cluster,
just like the non-turbulent disturbances that cause only DKP without dispersion.
The fact is, turbulent and nonturbulent motion cannot be separated simply
by least square fitting. In geophysical circumstances the difference
between them is fine and not at all well defined. It was seen by Molinari
and Kirwan that the motion of the scale of the cluster size often satisfies
the frictionless potential vorticity equation approximately. It will
be seen here that the same motion also displays a gradual dispersion,

a characteristic of turbulence.



2. REVIEW OF THEORY OF DISPERSION

(a) Dispersion of a single particle

The theory of dispersion of a particle from a point source was
discussed in a fundamental work by G.I. Taylor (1921). Assuming one-
dimensional fluctuations in a stationary and homogeneous turbulent medium,
he showed that the mean square of the distance X travelled by a fluid

particle in time t is given by

A
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where R is the Lagrangian auto-correlaticn function

I

R(T) = W ultrr) (2)

Here the overbar denotes ensemble average; u(t) and u(t+ X) are the
fluctuating velocities of the same particle at times t and (t+?) respectively.
For small times (t<<J, where J is the integral time scale), R= l.'f)

and (1) shows that yX* ~ T . For t >>7, equation (1) shows
that X+ ~ t7%.

One can define an equivalent eddy coefficient such that a
Fickian diffusion equation, of the form 2&/2t = k.. gﬁ“e/ax.’&v
l) t

in two dimension, gives the same dispersion rate as (1). For homogeneous

and stationary flow, it can be shown that (Batchelor 1949) the equivalent

diffusivity in two dimensions is
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where R;J(T) = W (t) U, (t+7) .

For isotropic flow in two-
dimensions the above reduces to

2
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where r2 = X2 + Y2

(b) Relative Dispersion

Suppose two particles, in a cloud of fluid particles, are

initially (t=0) separated by a vector Ly (with components
ia > P‘, s S', ) and that as a result of the turbulence the separation for
ary one trial is £(t) (components $(t)s A, §(t)) at

time t. Let &u(t) be the x-componert of the relative velocity of the two
particles. Then the rate of increase of average distance between the

two particles in the x-direction at time t is

e -———'—"—_—’T £
% Pt = 2/5&@)5%({3)4‘:/ (5)
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This shows that d(?‘)/dt —>t as t —>0; it is also clear that
2 (51>/ol.t —> 2 d X/dt as t —> ©0 since then the two particles

wander indeperdently. For intermediate values of {_ and t, E2(t)



lies between the Kolmogorof microscale and the large eddy structures, that

is the inertial, locally isotropic range. Batchelor (1950) argues that then

we must have

== (te) ©)

€ is the viscous dissipation rate. Equation (6) requires that

where
S 3
& L €t
@)
which can be rewritten as
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Equation (8), which suggests that the eddy Jdiffusivity is proportional to

4/3 power of the scale of the prenomenon, is known as Richardson's 4/3

law of eddy diffusivity. It has been found to be fairly good in the

atmosphere (e.g., Richardson 1926) and in the ocearn (Stommel 1949, Okubo 1971).
If there is no directional prefererce, an assumption already used

in deriving (8), then the mear area A of a buoy cluster should be proporticnal

to £ , and (8) car be rewritten as
44 T E‘/s S
1t - (9)
-

If the flow has the dispersive characteristics of turbulence, then A must

increase with time, possibly something like t3 if Richardson's law is



approximately true. On the other hand, dA/dt would be zero if only

frictionless wave motions were present; the buoys would then come closer

and drift apart, without a mean tendency.



on APPLICATION TO BUOY CLUSTER

During 1971-1976, several experiments were conducted by the group

at AOML/NOAA, which involved the tracking of buoy clusters (3-5 buoys)

in the Caribbean Sea and Gulf of Mexico. Some details of the experimental

procedure are giver. in Molinari and Kirwan (1975). The data interval
between consecutive position fixes is either 15 min. or 30 min. However,
the position data appear to be dominated by random errors for periods

less than 6h. Therefore, the data were first averaged to form hourly
values, and then a running second-degree polynomial was fitted through

13 consecutive hourly positicns. Evaluation of the polynomial at its
midpoint, with a translation of the polynomial by 1 h, gives an hourly

time series which can be regarded as a low-passed series with periods
larger than 12 h. Drifter velocities were determined by center differencing
in time.

In (9) the overbar denotes ensemble average, that is the average
over experiments with identical initial conditions. Since this average
cannot be determined in the present experiments, A at a certain t will be
determined by passing a smooth curve through all A(t), as shown by the
dotted line in the top left panel of Fig. 2.

Figure 1 shows the drifter trajectories cf four legs of the 1971
western Caribbean Sea data, reproduced from Molinari and Kirwan (1975).
Figure 2 shows the area of the buoy cluster versus time for each leg. It
is seen that, in the mean, the area does increase with time in legs 1, 2 and 5,
while it decreases slightly in leg 4. The increase is particularly rapid
towards the end of leg 3, which can be explained as follows: The westward

I = S il coast, monctorically converges and accelerates
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ncrthward, as evident in th

¢ speed plot of Fig. 1. With larger (relative)

velocities, equation (5) shows that the rate of dispersion is larger. The

rate of dispersion in other legs is smaller nct only because the velocities

are smaller, but also because the fluctusting velocities far from the coast

presumably have less '"'frictional" or turbulence characteristics. If they

are completely '‘wave-like', then the correlation function in (5) will have

equal positive and negative areas, resulting in zero net dispersion

at large times.

Figure 3 shows the areas for a few other cases, taken at differert
times in the Yucatan current and in the Gulf of Mexico. It is again seen
that, in the mean, the area included by the buoy cluster increases in three out
of four cases, although there is a great deal of fluctuation with time.

A plot of the eddy diffusion coefficient dA/dt versus A is shown
in Figure 4. It is clear that the diffusivity increases with the scale
of the phenomenon, but the data do not encompass a large enough range of
A for testing the validity of the Richardson 4/3 law. (Presumably several
decades of A values are needed for such a test.) Besides, the data from
different regions are not expected to fall on the same line in Fig. 4,
since € is different (see Eq. 9). For example, the point with the highest
dA/dt ( ~ 920 m2/s) in Fig. 4 was found from the 1a§t part of Fig. 2, leg 3,
where the cluster was near the coastal boundary layer and apparently had

a larger £ .



i CONCLUSIONS

An analysis of the Lagrangian position data of a cluster of buoys,

consisting of 3-5 drifting buoys drogued at a depth of 20 m, shows that

the included area generally increases in the mean, although there is a great

deal of fluctuation with time. It seems that there are frictionless

organized motions, superimposed on some ""turbulence'' that causes a gradual

dispersion of the cluster with time. The tendency for dispersion increases
near the coast, where the velocities and frictional mechanisms are larger.
It was found in Molinari and Kirwan (1975) that the frictionless
potential vorticity equation had a qualitative validity in some cases, but
the residual (much of which could presumabiy be attribiited to frictional
processes) can also be of the same order as the other terms in the equation.
In all of the new data sets treated in the present work the residual was
found to be non-negligible. It follows that the frictional terms are
generally important in the vorticity balance, ard an order of magnitude

estimate confirms this. A typical eddy diffusivity for a scale length of

|

Ax~5km is found from Fig. 4 to be about k ~ 200 m?/s. Using ¢ Y

(Molinari and Kirwan 1975), we get the frictional term in the vorticity

equation as Kk s $/o%F ~ 0.2 w0 '? 572 . The magnitude

of the frictionless terms in the vorticity equation, namely d(?¢ +4)/dt

and ($+£) Y, v , were observed to be less than about 8 x 10 Us™

’

with a typical magnitude something like 2 x 10'105_2. The friction temm

thus seems to be somewhat less than, but of the order of, the fricticnless

terms of the vorticity equation. A frictionless balance may therefore be

expected at places, but areas within SO km of coasts should be dominated

- - q
by friction, where k > 1000 m“/s for similar spacial scales.

One idea suggested in Molinari and Kirwan is corrected here. It

wa i
S suggested in that wcrk that the relative distortion of the buoy cluster,
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caused primarily by scales of motion of the size of the buoy cluster,
could be separated from the ''turbulent' field by using more than 3 buoys,
and least square fitting in space. It is suggested in the present work
that the turbulent field is not necessarily of a scale smaller than the
cluster size. In fact, the turbulent eddies that are most effective in
causing frictional as well as dispersive effects on a motion has a scale
which is same as that of the phenomenon considered. Dispersive as well as
other experiments in the ocean and the atmosphere indicate that the
"equilibrium range', in which (9) is assumed to be valid, extencs to
hundreds of kilometers; in fact an upper limit beyond which (9) does not
hold has not been detected. This makes sense, since geophysical flows
have all ranges of eddy sizes, the largest of which are probably

of the size of the ocean basins.

-10-




APPENDIX 1

Data Processing

Raw data of the buoy (x,y) coordinates at 15 min. intervals were

supplied by NOAA/AOML, with a list of the known bad points. Many other

bad points were detected by plotting the raw data series, and omitted. These

and other existing gaps in the data series were patched by fitting second
degree polynomials across the gap.

It was known that the position data were dominated by random measure-
ment errors for periods less than 6h. However, these must also contain
“turbulence," which is almost impossible to separate from random errors.

The relative sizes of these two can in many cases be estimated from an
autocorrelation plot. Since the measurement errors are incoherent, but
turbulence has anintegral time scale, one generally gets a plot with a
sharp drop near the origin, followed by a much gentler decrease. This drop

near the origin of the autocorrelation plot is a measure of the random error.

Figure 5 shows a typical autocorrelation plot of the v-component
of velocity estimated from the 15 min. data. It is seen that the method fails
because there is no gentle decrease due to the presence of turbulence. This
is because the 15 min. data are so dominated by random errors that it

completely overwhelms the turbulent components.

In order to eliminate the random errors, the data were low passed
through a filter with a 12h half power point. The resulting series were
seen to be fairly similar to the ones detained by fitting second degree

polynominals through 13 consecutive hourly positions, as were done by

Molinari and Kirwan (1975). 1In order to be consistent, we hose to continue

with the polynomial fitting.



APPENDIX 2

Downstream Acceleration of the Yucatan Current

I - g .
t was observed in Molinari and Kirwan (1975) that the Yucatan

current accelerates rapidly downstream Jjust before it enters the Yucatan

Strait. It was not clear whether this was due to a "nozzle effect"

because of decrease of flow area, or something else. I think it is not

this nozzle effect — the presence of the island of Cuba has nothing to do

with this. Two explanations are provided below.

(1) Without Rotation

viscous
bg&l\dﬂ"

lagsr

One explanation is that the acceleration is due to a continued

convergence that occurs along a wall when an irrotational stream impinges

upon it.



The irrotational flow given by the stream function

P = kxy (k = constant)
gives rise to
u = -kx
v = ky

Thus, v increases linearly along the wall. Even when one assumes a viscoys
boundary layer along the wall, it can be shown (e.g., Batchelor 1967, p2gs)
that the similarity solutions within the boundary layer give

vy

(2) With Rotation

The above explanation can be questioned since the interior
solution may not be assumed irrotational because of the presence of Cariolis
forces. Another argument, (Morgan, 1956) can be provided by the conservation
of potential vorticity for a layer of fliud of depth h which can be regarded
as approximately constant:

D (3+4) =0

Within the boundary layer, this reduces to

2V _
= +-f — L‘V) (AT)

(A1) shows that av/3x must decrease as a particle travels northwards

into regions of larger -f (?-{-3(33). Since 3v/3x is approximately zero when

Egn.
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the particle enters the boundary layer, 3v/9x must be more and more negative

as it travels northward. Thus, v must increase with y.

These qualitative arguments can be formally justified as follows.

Define a transport stream function \V:

V = ;;\+n//1>>¢-'== hy
U= - gxy/gj = hu

where



i dary layer.
Let U, be the y-independent transport into the boun y lay

Then the
value of the stream function on a streamline which is at a distance y from ap
arbitrary datum is V= Uﬂa_ . In the interior 9V/3’~ =0 > and hence
(A1) gives

Fly) = f.+py
r F(¥) = £+ £¥ (13
The same function also

[ -]
holds in the boundary layer.
Point in the boundary layer,

2L - F(vy) - fo-By

which, using (A3), reduces to

% = g By
Using (A2), %

the above gives

v _( h
ax:. %. W
Let the solution of (Ad) pe

= ﬁk\r (A4)
Vo= y?

The particyiar integral \llp,

which Satisfies the entijre equation
Tinear in y.

¢ 15 Obviously
Letting \YP: K} , a s

ubstitutign into (A4) gives K .
Thus

)
The comp]ementahy function Satisfieg the homogeneous €quation
:
CAY - h 3
| Cvey U V¥V =0
whose SOlution js Lo

A A(y) o VBRDL
Thus, the total S0lutiogn is




weh@) P Ly,

7 getermine A(y), apply the boundary condition that\P= 0 @ x = 0. Thi
= o. .

gives A= -q.y. Thus, the solution finally reduces to

ol = U“}D- L"‘@?&]

me jongshore velocity is J—
v o= V. = 3phl 2 ph [t

rticity predicts a boundary layer

(A5)

Thus, the conservation of potential vo

of width AIU,./Ph :\l \&.7; , and a linear increase of longshore

velocity with y (Morgan 1956) .
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Fig. 2.
Flges 3:
Fig. 4.
Fig. 5.

LIST OF FIGURES

Diagram of the drifter trajectories, including speeds for
legs 1 through 4, in 1971 western Caribbean Sea data. The
four legs were occupied in chronological order. The times
are in Julian Day/Hour. The intervals (A,B) and (C,D) refer

to the part of the trajectory over which potential vorticity

was conserved. Reproduced from Molinari and Kirwin (1975) .

Area versus time in four legs shown in Fig. 1. The time

axis shows Julian days and the hour. The dotted line in leg |
shows the mean A(t) used in computing dA/dt; the mid-point

of this dotted line is used in computing A in eqn. (9). Redrawn

from Molinari and Kirwin (1975)

Area versus time in four experiments in the Gulf of Mexico
and Caribbean Sea. The origin of time axis is marked in Julian
days and hours.

The diffusion coefficient dA/dt versus the scale (K)Z The

2/3
straight line indicates the Richardson law dA/dt ~ A .

Auto-correlation plot of the v-component of velocity computed
from 15 min data, from the buoy 1, leg 3, of the 1971 Caribbean

experiment.
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